
Blorb:	An	IF	Resource	Collection	Format	Standard
Format	specification	version	2.0.4
Maintained	by	IFTF:	<specs@ifarchive.org>

Copyright	2020	by	the	Interactive	Fiction	Technology	Foundation.	This	specification	is	licensed	under	a	Creative
Commons	Attribution-Noncommercial-Share	Alike	3.0	Unported	License:	http://creativecommons.org/licenses/by-nc-
sa/3.0

This	document	and	further	Blorb	information	can	be	found	at:	 https://github.com/iftechfoundation/ifarchive-if-specs

This	is	a	formal	specification	for	a	common	format	for	storing	resources	associated	with	an	interactive	fiction	game	file.
Resources	are	data	which	the	game	can	invoke,	such	as	sounds	and	pictures.	In	addition,	the	executable	game	file	may
itself	be	a	resource	in	a	resource	file.	This	is	a	convenient	way	to	package	a	game	and	all	its	resources	together	in	one
file.

Blorb	was	originally	designed	solely	for	the	Z-machine,	which	is	capable	of	playing	sounds	(Z-machine	versions	3	and
up)	and	showing	images	(the	V6	Z-machine).	However,	it	has	been	extended	for	use	with	other	IF	systems.	The	Glk
portable	I/O	library	uses	Blorb	as	a	resource	format,	and	therefore	so	does	the	Glulx	virtual	machine.	(See
http://eblong.com/zarf/glk/	and	http://eblong.com/zarf/glulx/.)	ADRIFT	5	(see	http://www.adrift.org.uk/)	also	uses	Blorb,
albeit	with	an	extended	format	list.

This	format	is	named	"Blorb"	because	it	wraps	your	possessions	up	in	a	box,	and	because	the	common	save	file	format
was	at	one	point	named	"Gnusto".	That	has	been	changed	to	"Quetzal",	but	I'm	not	going	to	let	that	stop	me.

This	proposal	is	longer	than	I	would	have	liked.	However,	a	large	percentage	of	it	is	optional	stuff	–	optional	for	either
the	interpreter	writer,	the	game	author,	or	both.	That	may	make	you	feel	better.	I've	also	put	in	lots	of	examples,
explication,	and	self-justification.

0.	Overall	Structure
1.	Contents	of	the	Resource	Index	Chunk
2.	Picture	Resource	Chunks
2.1.	PNG	Pictures
2.2.	JPEG	Pictures
2.3.	Placeholder	Pictures

3.	Sound	Resource	Chunks
3.1.	AIFF	Sounds
3.2.	Ogg	Sounds
3.3.	MOD	Sounds
3.4.	Song	Sounds

4.	Data	Resource	Chunks
5.	Executable	Resource	Chunks
5.1.	Multiple	Executable	Chunks

6.	The	Game	Identifier	Chunk
7.	The	Color	Palette	Chunk
8.	The	Frontispiece	Chunk
9.	The	Resource	Description	Chunk
10.	Metadata
11.	Chunks	Specific	to	the	Z-machine
11.1.	The	Release	Number	Chunk
11.2.	The	Resolution	Chunk
11.3.	The	Adaptive	Palette	Chunk
11.4.	The	Looping	Chunk

12.	Other	Optional	Chunks
13.	Deprecated	Chunks
14.	Presentation	and	Compatibility
14.1.	File	Suffixes
14.2.	MIME	Types
14.3.	Z-Machine	Compatibility	Issues
14.4.	Glk	Compatibility	Issues

https://iftechfoundation.org/
http://creativecommons.org/licenses/by-nc-sa/3.0
https://github.com/iftechfoundation/ifarchive-if-specs
http://eblong.com/zarf/glk/
http://eblong.com/zarf/glulx/
http://www.adrift.org.uk/

14.5.	ADRIFT	5	Compatibility	Issues
15.	The	IFF	Format
16.	Other	Resource	Arrangements
17.	Rationales	and	Rationalizations

0.	Overall	Structure

The	overall	format	will	be	a	new	IFF	type.	The	FORM	type	is	'IFRS'.

The	first	chunk	in	the	FORM	must	be	a	resource	index	(chunk	type	'RIdx'.)	This	lists	all	the	resources	stored	in	the	IFRS
FORM.	There	must	be	exactly	one	resource	index	chunk.

The	resources	are	stored	in	the	FORM	as	chunks;	each	resource	is	one	chunk.	They	do	not	need	to	be	in	any	particular
order,	since	the	resource	index	contains	all	the	information	necessary	to	find	a	particular	resource.

There	are	several	optional	chunks	which	may	appear	in	the	file:	the	release	number	(chunk	type	'RelN'),	the	game
identifier	(chunk	type	'IFhd'),	and	others	defined	hereafter.	They	may	occur	anywhere	in	the	file	after	the	resource
index.

Several	optional	chunks	may	also	appear	by	convention	in	any	IFF	FORM:	'(c)	',	'AUTH',	and	'ANNO'.	These	may	also
appear	anywhere	in	the	file	after	the	resource	index.

1.	Contents	of	the	Resource	Index	Chunk

4	bytes									'RIdx'										chunk	ID
4	bytes									n															chunk	length	(4	+	num*12)
4	bytes									num													number	of	resources
num*12	bytes				...													index	entries

There	is	one	index	entry	for	each	resource.	(But	not	for	the	optional	chunks.)	Each	index	entry	is	12	bytes	long:

4	bytes									usage											resource	usage
4	bytes									number										number	of	resource
4	bytes									start											starting	position	of	resource

The	index	entries	should	be	in	the	same	order	as	the	resource	chunks	in	the	file.

The	usage	field	tells	what	kind	of	resource	is	being	described.	There	are	currently	four	values	defined:

·		'Pict':	Picture	resource
·		'Snd	':	Sound	resource
·		'Data':	Data	file	resource
·		'Exec':	Code	resource

The	number	field	tells	which	resource	is	being	described,	from	the	game's	point	of	view.	For	example,	when	a	Z-code
game	calls	@draw_picture	with	an	argument	of	3,	the	interpreter	would	find	the	index	entry	whose	usage	is	'Pict'	and
whose	number	is	3.	For	code	chunks	(usage	'Exec'),	the	number	should	contain	0.

The	start	field	tells	where	the	resource	chunk	begins.	This	value	is	an	offset,	in	bytes,	from	the	start	of	the	IFRS	FORM
(that	is,	from	the	start	of	the	resource	file.)

Note	that	the	start	field	must	refer	to	the	beginning	of	a	chunk.	It	is	not	strictly	required	for	each	resource	to	refer	to	a
different	chunk.

2.	Picture	Resource	Chunks

Each	picture	is	stored	as	one	chunk,	whose	content	is	a	PNG	file,	a	JPEG	(JFIF)	file,	or	a	placeholder	rectangle.	(Note	that
these	are	various	possible	formats	for	a	single	resource.	It	is	not	possible	to	have	a	PNG	image	and	a	JPEG	image	with
the	same	image	resource	number.)

2.1.	PNG	Pictures

A	PNG	resource	has	a	chunk	type	of	'PNG	'.

PNG	is	a	lossless	image	compression	format.	The	PNG	file	format	is	available	at

·		http://www.libpng.org/pub/png/

2.2.	JPEG	Pictures

A	JPEG	resource	has	a	chunk	type	of	'JPEG'.

JPEG	is	a	lossy	image	compression	format,	developed	for	photograph-like	images.	For	information	on	JPEG,	see

·		http://www.jpeg.org/jpeg/

2.3.	Placeholder	Pictures

A	third	form	of	picture	resource	is	a	placeholder	rectangle.	A	rectangle	has	only	size,	but	no	contents.	This	format	exists
to	describe	the	legacy	behavior	of	some	V6	Infocom	games	(Zork	Zero,	Shogun,	and	Arthur).	Its	support	in	interpreters	is
optional,	and	its	use	is	strongly	discouraged	for	any	purpose	other	than	conversions	of	Infocom	graphics.

4	bytes									'Rect'										chunk	ID
4	bytes									8															chunk	length
4	bytes									width											rectangle	width
4	bytes									height										rectangle	height

Either	or	both	of	the	width	and	height	may	be	zero.

In	a	Z-code	game,	a	rectangle	exists	for	the	purposes	of	@picture_data	and	@erase_picture,	but	its	use	in	@draw_picture
or	@picture_table	is	an	error.	The	behavior	of	rectangles	in	Glulx	and	other	game	files	is	not	defined.

[Thanks	to	Kevin	Bracey	for	this	extension.]

3.	Sound	Resource	Chunks

Each	sound	is	stored	as	one	chunk,	whose	content	is	either	an	AIFF	file,	an	Ogg	file,	a	MOD	file,	or	a	song	file.	(Note	that
these	are	various	possible	formats	for	a	single	resource.	It	is	not	possible	to	have	an	AIFF	sound	and	a	MOD	sound	with
the	same	sound	resource	number.)

On	the	Z-machine,	we	must	consider	the	problems	of	how	the	game	knows	the	interpreter	can	play	music,	and	how
sampled	sounds	are	played	over	music.	See	the	section	"Z-Machine	Compatibility	Issues"	later	in	this	document.	(These
issues	are	not	relevant	to	Glk	and	Glulx.)

3.1.	AIFF	Sounds

An	AIFF	(Audio	IFF)	file	has	chunk	type	'FORM',	and	formtype	'AIFF'.	AIFF	is	an	uncompressed	digital-sample	format
developed	in	the	late	1980s.	The	AIFF	format	is	available	at	these	locations:

·		http://www.digitalpreservation.gov/formats/fdd/fdd000005.shtml
·		http://eblong.com/zarf/ftp/aiff-c.9.26.91.ps

3.2.	Ogg	Sounds

An	Ogg	Vorbis	file	has	chunk	type	'OGGV'.	This	is	a	high-quality	(but	lossy)	audio	compression	format,	comparable	to
MP3	(but	without	the	patent	concerns	that	encumber	MP3).	The	Ogg	format	is	available	at:

·		http://www.vorbis.com/

3.3.	MOD	Sounds

MOD	is	an	Amiga-originated	format	for	music	synthesized	from	note	samples.	Over	the	years,	other	formats	of	this	type
–	generally	called	"tracker"	or	"module	music"	formats	–	have	arisen.	Blorb	supports	four:	original	".MOD"	files,
ImpulseTracker	(".IT"),	FastTracker	2	Extended	(".XM"),	and	ScreamTracker	3	(".S3M").

http://www.libpng.org/pub/png/
http://www.jpeg.org/jpeg/
http://www.digitalpreservation.gov/formats/fdd/fdd000005.shtml
http://eblong.com/zarf/ftp/aiff-c.9.26.91.ps
http://www.vorbis.com/

Because	tracker-playing	libraries	typically	handle	many	formats,	it	is	most	practical	for	Blorb	to	lump	them	all	together.
Regardless	of	which	tracker	format	is	used, 	the	chunk	type	will	be	'MOD	'.

The	formats	are	described	here:

·		http://www.digitalpreservation.gov/formats/fdd/fdd000126.shtml

This	spec	does	not	attempt	to	distinguish	variations	within	the	four	supported	formats.	(".MOD"	is	particularly	ill-
defined,	although	I	have	saved	comments	on	the	original	MOD	format	at	http://eblong.com/zarf/blorb/mod-spec.txt.)
Instead,	we	recommend	that	C	implementations	embed	libmodplug,	a	public-domain	tracker-playing	library.	Its	home
page	is:

·		http://modplug-xmms.sourceforge.net/

However,	some	bug	fixes	are	included	in	the	version	packaged	with	Windows	Glk:

·		http://ifarchive.org/if-archive/programming/glk/implementations/

(Note	that	it	may	be	safer	to	compile	libmodplug	with	the	MODPLUG_BASIC_SUPPORT	option,	which	eliminates	many
obscure	tracker	formats	that	Blorb	does	not	support.)

Where	libmodplug	is	not	practical,	implementations	should	use	whatever	tracker-playing	library	claims	to	support	the
four	formats	in	question.	We	trust,	perhaps	beyond	reason,	that	implementation	differences	will	not	lead	game	creators
to	their	doom.

3.4.	Song	Sounds

The	song	file	format	is	deprecated,	as	of	Blorb	2.0. 	It	is	complicated,	non-standard,	and	hard	to	use.	Its	support	in
interpreters	should	be	considered	optional.	However,	it	will	continue	to	be	documented	here.

A	song	file	has	chunk	type	'SONG'.	This	is	similar	to	a	MOD	file,	but	with	no	built-in	sample	data.	The	samples	are
instead	taken	from	AIFF	sounds	in	the	resource	file.	For	each	sample,	the	22-byte	sample-name	field	in	the	song	should
contain	the	string	"SND1"	to	refer	to	sound	resource	1,	"SND953"	to	refer	to	sound	resource	953,	and	so	on.	Any	sound	so
referred	to	must	be	an	AIFF,	not	a	MOD	or	song.	(You	can	experiment	with	fractal	recursive	music	on	your	own	time.)

Each	sample	record	in	a	MOD	or	song	contains	six	fields:	sample	name,	sample	length,	finetune	value,	volume,	repeat
start,	repeat	length.	In	a	MOD	file,	the	sample	name	is	ignored	by	Blorb	(it	is	traditionally	used	to	store	a	banner	or
comments	from	the	author.)	In	a	song	file,	the	sample	name	contains	a	resource	reference	as	described	above;	but	the
sample	length,	repeat	start,	and	repeat	length	fields	are	ignored.	These	values	are	inferred	from	the	AIFF	resource.	(The
repeat	start	and	repeat	length	are	taken	from	the	sustainLoop	of	the	AIFF's	instrument	chunk.	If	there	is	no	instrument
chunk,	or	if	sustainLoop.playMode	is	NoLooping,	there	is	no	repeat;	the	repeat	start	and	length	values	are	then
considered	zero.)

Note	that	an	AIFF	need	not	contain	8-bit	sound	samples,	as	a	sound	built	into	a	MOD	would.	A	clever	sound	engine	may
take	advantage	of	this	to	generate	higher-quality	music.	An	unclever	one	can	trim	(or	pad)	the	AIFF's	data	to	8	bits	before
playing	the	song.	In	the	worst	case,	it	is	always	possible	to	trim	the	AIFF	data	to	8	bits,	append	it	to	the	song	data,	fill	in
the	song's	sample	records	(with	the	appropriate	lengths,	etc,	from	the	AIFF	data);	the	result	is	a	complete	MOD	file,
which	can	then	be	played	by	a	standard	MOD	engine.

The	intent	of	allowing	song	files	is	both	to	allow	higher	quality,	and	to	save	space.	Note	samples	are	the	largest	part	of	a
MOD	file,	and	if	the	samples	are	stored	in	resources,	they	can	be	shared	between	songs.	(Typically	note	samples	will	be
given	high	resource	numbers,	so	that	they	do	not	conflict	with	sounds	used	directly	by	the	game.	However,	it	is	legal	for
the	game	to	use	a	note	sample	as	a	sampled-sound	effect,	if	it	wants.)

4.	Data	Resource	Chunks

Each	data	file	is	stored	as	one	chunk,	with	chunk	type	'TEXT'	or	'BINA'	(denoting	text	or	binary	data).	The	format	and
contents	are	up	to	the	game	to	interpret.

This	feature	was	designed	to	support	Glulx,	but	data	resources	can	be	accessed	by	any	game	format	if	the	interpreter
supports	them.

For	Glulx	games	(and	any	other	game	format	which	uses	the	Glk	API),	the	data	format	must	follow	the	conventions

http://www.digitalpreservation.gov/formats/fdd/fdd000126.shtml
file:///Users/zarf/Downloads/src/specs/glk-dev-new/dist/mod-spec.txt
http://modplug-xmms.sourceforge.net/
http://ifarchive.org/if-archive/programming/glk/implementations/

described	in	the	Glk	spec.	(http://eblong.com/zarf/glk/,	"Resource	Streams".)

[To	summarize:	if	the	data	file	is	opened	via	glk_stream_open_resource(),	then	it	will	be	read	as	a	stream	of	bytes;	text
will	be	assumed	to	be	encoded	as	Latin-1.	If	it	is	opened	via	glk_stream_open_resource_uni(),	then	a	'TEXT'	chunk	will
be	assumed	to	be	a	stream	of	characters	encoded	as	UTF-8;	'BINA'	will	be	assumed	to	be	a	stream	of	big-endian	four-byte
integers.	If	read	by	lines	(glk_get_line_stream(),	etc),	resource	text	should	use	Unix	line	breaks	in	all	cases.]

5.	Executable	Resource	Chunks

There	should	at	most	one	chunk	with	usage	'Exec'.	 [But	see	below.]	If	present,	its	number	must	be	zero.	Its	content	is	a
VM	or	game	executable.	Its	chunk	type	describes	its	format:

·		'ZCOD':	Z-code
·		'GLUL':	Glulx
·		'TAD2':	TADS	2
·		'TAD3':	TADS	3
·		'HUGO':	Hugo
·		'ALAN':	Alan
·		'ADRI':	ADRIFT
·		'LEVE':	Level	9
·		'AGT	':	AGT
·		'MAGS':	Magnetic	Scrolls
·		'ADVS':	AdvSys
·		'EXEC':	Native	executable

[This	list	of	formats	is	taken	from	the	Babel	format	agreement.	See	 http://babel.ifarchive.org/	for	more	information.
Most	of	these	development	systems	do	not	support	Blorb	at	the	present	time;	the	list	is	available	for	future	use.	Other
executable	formats	may	also	be	added	in	the	future.	As	a	convention,	the	chunk	types	should	be	taken	from	the	Babel
format	name,	converted	to	upper	case	and	padded	(if	necessary)	with	spaces.]

[The	EXEC	(native)	chunk	type	is	not	likely	to	be	useful,	because	it	is	underspecified.	Nothing	(beyond	the	chunk	data
itself)	indicates	what	CPU	or	operating	system	the	executable	is	intended	for.	Again,	it	is	defined	here	following	the
Babel	format	list.]

A	resource	file	which	contains	an	executable	chunk	contains	everything	needed	to	run	the	executable.	An	interpreter
can	begin	interpreting	when	handed	such	a	resource	file;	it	sees	that	there	is	an	executable	chunk,	loads	it,	and	runs	it.

A	resource	file	which	does	not	contain	an	executable	chunk	can	only	be	used	in	tandem	with	an	executable	file.	The
interpreter	must	be	handed	both	the	resource	file	and	the	executable	file	in	order	to	begin	interpreting.

If	an	interpreter	is	handed	inconsistent	arguments	–	that	is,	a	resource	file	with	no	executable	chunk,	or	a	resource	file
with	an	executable	chunk	plus	an	executable	file	–	it	should	complain	righteously	to	the	user.

5.1.	Multiple	Executable	Chunks

As	of	this	spec,	no	IF	system	puts	more	than	one	'Exec'	chunk	in	a	Blorb	file,	or	has	any	need	to.	However,	this	could
change	in	the	future.

One	possible	use	(noted	as	a	comment	in	earlier	versions	of	this	spec)	is	to	support	several	loadable	libraries	or	game
segments.	In	such	a	case,	chunk	zero	should	contain	the	code	to	execute	first,	or	at	the	top	level.

Another	possibility	is	to	distribute	several	versions	of	a	game	in	one	Blorb	package.	IF	platforms	are	famed	for	the
fragility	of	their	save	files;	a	player	who	downloads	an	updated	game	file	is	likely	to	find	that	it	no	longer	loads	her	old
saved	games.	This	could	be	avoided	if	the	updated	Blorb	actually	contained	multiple	game	files,	one	per	'Exec'	chunk.
Chunk	zero	would	be	the	preferred	(most	recent)	game	version,	but	when	loading	a	save	file,	the	interpreter	would
select	whichever	game	version	was	compatible	with	it.

6.	The	Game	Identifier	Chunk

This	identifies	which	game	the	resources	are	associated	with.	The	chunk	type	is	'IFhd'.

This	chunk	is	optional;	at	most	one	should	appear.	If	it	is	present,	and	the	interpreter	is	given	a	game	file	along	with	a

http://eblong.com/zarf/glk/
http://babel.ifarchive.org/

resource	file,	the	interpreter	can	check	that	the	game	matches	the	IFhd	chunk.	If	they	don't,	the	interpreter	should
display	an	error.	The	interpreter	may	want	to	provide	a	way	for	the	user	to	ignore	or	skip	this	error	(for	example,	if	the
user	is	a	game	author	testing	changes	to	the	game	file.)

If	the	resource	file	contains	an	executable	chunk,	there	is	little	reason	to	have	an	IFhd	chunk.	It	is	legal,	however,	as
long	as	the	identifier	matches	the	executable.

For	Z-code,	the	contents	of	the	game	identifier	chunk	are	defined	in	the	common	save	file	format	specification,	section
5.	This	spec	can	be	found	at

·		http://ifarchive.org/if-archive/infocom/interpreters/specification/savefile_14.txt

The	"Initial	PC"	field	of	the	IFhd	chunk	(bytes	10	through	12)	has	no	meaning	for	resource	files.	It	should	be	set	to	zero.

For	Glulx,	the	contents	of	the	game	identifier	chunk	are	defined	in	the	Glulx	specification.	This	can	be	found	at
http://eblong.com/zarf/glulx/.

7.	The	Color	Palette	Chunk

This	contains	information	about	which	colors	are	used	by	picture	resources	in	the	file.	The	chunk	type	is	'Plte'.	It	is
optional,	and	should	not	appear	if	there	are	no	'Pict'	resources	in	the	file.	At	most	one	color	palette	chunk	should
appear.

The	format	is:

4	bytes									'Plte'										chunk	ID
4	bytes									n															chunk	length
n	bytes									...													color	data

There	are	two	possibilities	for	the	color	data	format.	The	first	is	an	explicit	list	of	colors.	In	this	case,	the	data	consists	of
1	to	256	color	entries.	Each	entry	is	three	bytes,	of	the	form:

1	byte									red	value	(0	=	black,	255	=	red)
1	byte									green	value	(0	=	black,	255	=	green)
1	byte									blue	value	(0	=	black,	255	=	blue)

The	second	case	is	a	single	byte,	which	may	have	either	the	value	16	or	32	(decimal).	16	indicates	that	the	picture
resources	are	best	displayed	on	a	direct-color	display	which	has	16	or	more	bits	per	pixel	(5	or	more	bits	per	color
component.)	32	indicates	that	the	resources	are	best	displayed	with	32	or	more	bits	per	pixel	(8	or	more	bits	per	color
component.)

The	two	cases	are	differentiated	by	checking	the	chunk	length	(n).	If	n	is	1,	it's	a	direct	color	value;	if	it's	a	positive
multiple	of	3,	it's	a	color	list,	and	the	number	of	entries	is	the	length	divided	by	3.	Any	other	length	is	illegal.

This	chunk	is	only	a	hint;	there	is	no	guarantee	about	what	the	interpreter	will	do	with	it.	A	color	list	will	most	likely	be
useful	if	the	interpreter's	display	can	only	display	a	limited	number	of	colors	(for	example,	an	8-bit	indexed	color
device).	The	interpreter	may	set	the	display	to	the	colors	listed	in	the	palette.	Or	it	may	set	the	display	to	just	some	of	the
colors	listed	(for	example,	if	it	wishes	to	reserve	some	colors	for	text	display,	or	if	it	just	doesn't	have	enough	colors
available.)	Or	the	interpreter	may	ignore	the	palette	chunk,	or	do	something	else.

Similarly,	if	the	interpreter	finds	a	"16"	or	"32"	value,	it	may	set	the	display	to	the	appropriate	bit	depth.	Or	it	may	set	the
display	to	an	8-bit	color	cube,	and	dither	the	images	for	display.	Or,	again,	it	may	ignore	the	palette	chunk	entirely,	or
do	something	else.

It	is	not	required	that	the	palette	chunk	list	every	color	used	in	the	'Pict'	resources.	It	is	not	required	that	the	colors	in	the
palette	all	be	different,	or	that	they	all	are	actually	used	by	'Pict'	resources.	It	is	not	required	that	the	palette	have
anything	to	do	with	the	game	art	at	all.	Of	course,	if	you	give	the	interpreter	misleading	hints,	you	deserve	whatever	you
get.

8.	The	Frontispiece	Chunk

The	Blorb	format	generally	does	not	specify	how	images	are	loaded	and	displayed;	that	is	the	province	of	the	game	file
format.	However,	it	may	be	desirable	to	associate	a	single	image	with	the	game.	The	image	would	serve	as	a

http://ifarchive.org/if-archive/infocom/interpreters/specification/savefile_14.txt
http://eblong.com/zarf/glulx/

frontispiece,	or	"cover	art".

The	exact	use	of	a	frontispiece	image	is	left	open	to	invention.	An	interpreter	may	display	it	before	starting	a	game.	Or	it
might	display	frontispieces	while	the	player	is	choosing	a	game	to	play	(as	an	aid	to	locating	a	particular	game).	An
index	of	games	might	extract	the	frontispieces	and	use	them	as	catalog	illustrations.

If	present,	the	frontispiece	is	simply	an	ordinary	picture	resource.	It	is	singled	out	as	a	frontispiece	by	a	chunk	with	type
'Fspc';	this	contains	its	image	resource	number.	There	may	not	be	more	than	one	'Fspc'	chunk.

The	frontispiece	image	may	be	of	any	legal	Blorb	type	(except	a	placeholder	rectangle).	The	image	may	be	of	any	size,
but	is	preferred	to	be	square	or	approximately	so.	This	allows	interpreters	to	display	frontispieces	in	a	systematic	way,
scaling	them	to	fit	a	layout,	without	wasting	screen	space.

(Since	the	frontispiece	image	is	not	loaded	by	the	game	file,	it	may	be	used	even	with	game	files	that	do	not	support
graphics,	such	as	the	V5	Z-machine.	In	a	graphics-capable	game	file,	it	is	legal	for	the	frontispiece	image	to	also	be
loaded	by	the	game	file	in	the	usual	way.)

4	bytes									'Fspc'										chunk	ID
4	bytes									4															chunk	length
4	bytes									number										number	of	a	Pict	resource

9.	The	Resource	Description	Chunk

For	a	game	to	be	fully	accessible	to	visually	impaired	users,	it	should	provide	textual	descriptions	to	be	displayed	as
alternatives	to	images.	Similarly,	audio	resources	should	have	textual	descriptions	as	alternatives	for	hearing-impaired
users.

The	resource	description	chunk	allows	the	Blorb	file	to	offer	this	information.

4	bytes									'RDes'										chunk	ID
4	bytes									len													chunk	length
4	bytes									num													number	of	entries
																...													entries

The	entries	are	variable-length,	and	look	like:

4	bytes									usage											resource	usage
4	bytes									number										number	of	resource
4	bytes									length										length	of	text	(bytes)
length	bytes				text												textual	description	(UTF-8,
																																		not	null-terminated)

There	should	be	at	most	one	entry	for	each	resource	–	that	is,	each	(usage,	number)	pair.

Resource	descriptions	are	not	required,	but	they	are	recommended	for	significant	sounds	and	images.	(Images	used	for
decoration,	such	as	window	borders	or	text	dividers,	may	not	need	textual	descriptions.)	Data	and	executable	chunks	do
not	need	descriptions;	if	they	appear	in	this	chunk,	the	interpreter	can	ignore	them.

[An	interpreter	with	a	web	interface	would	apply	the	textual	description	of	an	image	as	an	"alt"	attribute	on	the	
tag.]

10.	Metadata

Metadata	is	a	contentious	topic,	with	which	the	Blorb	spec	is	not	entirely	unentangled.	(The	game	identifier	and
frontispiece	chunks	are	answers	to	small	parts	of	the	IF	metadata	problem.)

Rather	than	entangle	ourselves	further,	we	will	merely	say	that	metadata	will	be	stored	as	XML,	in	a	chunk	of	type
'IFmd'.	The	XML	structure	is	documented	in	the	Babel	format	agreement;	see	http://babel.ifarchive.org/.

4	bytes									'IFmd'										chunk	ID
4	bytes									n															chunk	length
n	bytes									...													XML	document	(UTF-8	encoding)

http://babel.ifarchive.org/

The	handling	of	metadata	chunks	will	not	be	defined	here.	In	particular,	the	behavior	of	an	interpreter	which	finds
more	than	one	metadata	chunk	is	undefined.	It	is	likely	to	be	a	good	idea	to	have	at	most	one.

11.	Chunks	Specific	to	the	Z-machine

The	Z-machine's	graphics	and	sound	capabilities	were	added	late	in	Infocom's	history,	but	early	in	the	history	of	data
format	standardization.	As	a	result,	the	Z-machine's	audio	and	image	models	are	both	too	rigid	and	too	flexible	to	work
well	with	modern	file	formats.

To	compensate	for	this,	we	add	additional	information	to	the	Blorb	file.	Interpreters	can	use	these	hints	to	display	the
resource	information	correctly.

Some	of	these	hints	are	needed	only	to	handle	legacy	Infocom	games	and	their	resources.	Others	will	be	useful	for	the
creation	of	new	Z-code	games.

Each	of	these	chunks	is	optional;	no	more	than	one	of	each	should	appear.

11.1.	The	Release	Number	Chunk

This	chunk	is	used	to	tell	the	interpreter	the	release	number	of	the	resource	file.	It	is	meaningful	only	in	Z-code	resource
files.

The	interpreter	passes	this	information	to	the	game	when	the	@picture_data	opcode	is	executed	with	an	argument	of	0.
The	release	number	is	a	16-bit	value.	The	chunk	format	is:

4	bytes									'RelN'										chunk	ID
4	bytes									2															chunk	length
2	bytes									num													release	number

This	chunk	is	optional.	If	it	is	not	present,	the	interpreter	should	assume	a	release	number	of	0.

11.2.	The	Resolution	Chunk

This	chunk	contains	information	used	to	scale	images.	The	chunk	type	is	'Reso'.	It	is	optional.	This	chunk	is	meaningful
only	in	Z-code	resource	files.

A	scalable	image	is	one	which	the	author	says	should	be	larger	when	more	space	is	available,	and	smaller	when	less
space	is	available.	(Note	that	the	Z-code	game	does	not	directly	control	the	scaling	of	images.	The	interpreter	controls
the	scaling	of	images,	in	response	to	the	information	in	the	resolution	chunk.	The	interpreter	then	provides	the	scaled
size	in	response	to	@picture_data	queries,	and	the	game	draws	its	display	based	on	those	queries.)

It	is	also	possible	to	create	images	that	have	a	fixed	scaling	ratio;	they	are	always	scaled	up	or	down	by	a	particular
amount,	regardless	of	window	size.

Not	all	images	have	to	be	scalable.	Unless	the	resolution	chunk	gives	scaling	data	for	an	image,	that	image	is	assumed	to
be	non-scalable.	Non-scalable	images	are	always	displayed	at	their	actual	size.	(One	image	pixel	per	screen	pixel.)

This	chunk	is	optional;	if	it	is	not	present,	then	all	of	the	images	in	this	file	are	non-scalable.

4	bytes									'Reso'										chunk	ID
4	bytes									num*28+24							chunk	length
4	bytes									px														standard	window	width
4	bytes									py														standard	window	height
4	bytes									minx												minimum	window	width
4	bytes									miny												minimum	window	height
4	bytes									maxx												maximum	window	width
4	bytes									maxy												maximum	window	height
num*28	bytes				...													image	resolution	entries

The	"standard	window	size"	is	the	normal	size,	the	author's	original	chosen	size,	for	the	Z-machine	window.	It	is	not	the
only	possible	size;	a	good	V6	game	should	be	prepared	for	any	window	the	interpreter	chooses	to	create.	The	idea	is	that
when	the	Z-machine	window	is	exactly	the	standard	size,	scalable	images	are	presented	at	their	original	size.	When	the
Z-machine	window	is	larger	than	the	standard	size,	scalable	images	are	scaled	up;	when	it	is	smaller,	scalable	images

are	scaled	down.

The	minimum	and	maximum	window	sizes	are	provided	as	a	hint	to	the	interpreter,	when	it	is	choosing	a	window	size.
It	may	also	use	the	standard	window	size	as	a	hint	for	this	purpose.	(If	the	interpreter	lacks	the	ability	to	choose	its	own
window	size,	of	course,	it	will	ignore	these	hints.)	The	idea	is	that	the	minimum	and	maximum	sizes	define	the	range	in
which	the	game	can	draw	itself	successfully.

Any	or	all	of	minx,	miny,	maxx,	maxy	can	indicate	"no	limit	in	this	direction"	by	containing	a	value	of	zero.	However,	px
and	py	must	contain	non-zero	values.	Unless	the	min	or	max	values	are	zero,	it	must	be	true	that	minx	≤	px	≤	maxx,
miny	≤	py	≤	maxy.

Important	note:	The	standard,	minimum,	and	maximum	window	size	values	are	measured	in	 screen	pixels.
Furthermore,	unscaled	pictures	should	be	drawn	in	screen	pixels	–	one	image	pixel	per	screen	pixel.	(This	may	seem
dumb	as	rocks,	and	maybe	it	is,	but	my	rationale	is	presented	at	the	end	of	this	document.)

Also	note	that	I	have	not	mentioned	Z-pixels.	This	standard	does	not	concern	itself	with	Z-pixels.

On	with	the	show.

The	standard,	minimum,	and	maximum	window	sizes	are	followed	by	a	set	of	image	entries,	one	for	each	scalable
image.	(Non-scalable	images	do	not	have	an	entry	in	this	table;	that's	how	they	are	declared	to	be	non-scalable.)	Each
image	entry	is	28	bytes,	of	the	form:

4	bytes									number										image	resource	number
4	bytes									ratnum										numerator	of	standard	ratio
4	bytes									ratden										denominator	of	standard	ratio
4	bytes									minnum										numerator	of	minimum	ratio
4	bytes									minden										denominator	of	minimum	ratio
4	bytes									maxnum										numerator	of	maximum	ratio
4	bytes									maxden										denominator	of	maximum	ratio

The	number	is	the	picture	number;	in	other	words,	this	entry	applies	to	the	resource	whose	usage	is	'Pict'	and	whose
number	matches	this	value.

The	entry	then	contains	a	standard,	minimum,	and	maximum	image	scaling	ratio.	Each	ratio	is	a	real	number,
represented	by	two	integers:

·		stdratio	=	ratnum	/	ratden
·		minratio	=	minnum	/	minden,
·		maxratio	=	maxnum	/	maxden.

Minratio	can	indicate	zero	("no	minimum	limit")	by	having	both	minnum	and	minden	equal	to	zero.	Similarly,	maxratio
can	indicate	infinity	("no	maximum	limit")	by	having	maxnum	and	maxden	equal	to	zero.	It	is	illegal	to	have	only	half	of
a	fraction	be	zero.

To	compute	the	actual	scaling	ratio	for	this	image,	the	interpreter	must	first	compute	the	overall	game	scaling	ratio,	or
Elbow	Room	Factor	(ERF).	If	the	actual	game	window	size	is	(wx,wy),	and	the	standard	window	size	is	(px,py),	then

·		ERF	=	(wx/px)	or	(wy/py),	whichever	is	smaller.

(Note	that	if	the	game's	window	is	exactly	its	standard	size,	ERF	=	1.0.	If	the	window	is	twice	the	standard	size,	ERF	=	2.0.
If	the	window	is	three	times	the	standard	width	and	four	times	the	standard	height,	then	ERF	=	3.0,	because	there's
really	only	enough	room	for	the	game's	standard	layout	to	be	tripled	before	it	overflows	horizontally.)

The	scaling	ratio	R	for	this	image	is	then	determined:

·		If	ERF*stdratio	<	minratio,	then	R	=	minratio.
·		If	ERF*sdtratio	>	maxratio,	then	R	=	maxratio.
·		If	minratio	≤	ERF*stdratio	≤	maxratio,	then	R	=	ERF	*	stdratio.

If	minratio	and	maxratio	are	the	same	value,	then	R	will	always	be	this	value;	ERF	and	stdratio	are	ignored	in	this	case.
(This	indicates	a	scalable	image	with	a	fixed	scaling	ratio.)

The	interpreter	then	knows	that	this	image	should	be	drawn	at	a	scale	of	R	screen	pixels	per	image	pixel,	both	vertically
and	horizontally.	The	interpreter	should	report	this	scaled	size	to	the	game	if	queried	with	@picture_data	(as	opposed	to

the	original	image	size).

Yes,	this	is	an	ornate	system.	The	author	is	free	to	ignore	it	by	not	including	a	resolution	chunk.	If	the	author	wants
scaled	images,	or	variably-scalable	images,	this	system	should	suffice.

Here	are	some	examples.	They're	not	necessarily	examples	of	good	art	design,	but	they	do	demonstrate	how	a	given	set
of	desires	translate	into	images	and	resolution	values.	All	are	for	a	game	with	a	standard	size	of	(600,400).

The	game	wishes	a	title	image	that	covers	the	entire	window,	and	all	the	resolution	should	be	visible	at	the	standard	size.
(So	if	the	window	is	twice	the	standard	size,	the	image	will	be	stretched	and	coarse-looking;	if	the	window	is	half	the
standard	size,	the	image	will	be	squashed	and	lose	detail.)

·		Image	size	(600,400);	stdratio	1.0;	minratio	zero;	maxratio	infinity.

The	game	has	a	background	image	of	a	cave,	made	from	a	scanned	photograph.	At	standard	window	size,	this	should
cover	the	entire	window,	but	not	all	the	detail	needs	to	be	visible.	If	the	window	is	larger,	the	image	should	still	cover	the
entire	window;	more	detail	will	be	visible,	up	to	twice	the	standard	size	(at	which	point	all	the	resolution	should	be
visible.)	If	the	window	is	larger	than	twice	the	standard	size,	the	image	should	not	be	stretched	farther;	instead	the	game
will	center	it	and	have	blank	space	around	the	edges.

·		Image	size	(1200,800);	stdratio	0.5;	minratio	zero;	maxratio	1.0.

The	game	has	small	monochrome	icons	indicating	different	magical	perceptions,	which	it	will	draw	interspersed	with
the	text.	The	icons	should	always	be	drawn	at	double	size,	two	screen	pixels	per	image	pixel,	regardless	of	the	window
size.

·		Image	size	(20,20);	stdratio	1.0;	minratio	2.0;	maxratio	2.0.	(In	this	case,	remember,	the	stdratio	value	is	ignored.)

The	game	has	a	graphical	compass	rose	which	it	will	draw	in	the	top	left	corner.	This	should	be	1/4	of	the	window	size	in
the	standard	case,	and	shrink	proportionally	if	the	window	is	smaller.	However,	if	the	window	is	larger	than	standard,
the	rose	should	not	grow;	all	the	extra	space	can	be	allotted	for	text.	All	detail	(image	pixels)	should	be	visible	in	the
standard	case.

·		Image	size	(150,100);	stdratio	1.0;	minratio	zero;	maxratio	1.0.

The	same	compass	rose,	still	to	be	1/4	of	the	window	size	–	but	this	time	it	is	critical	that	all	the	image	detail	be	visible
when	the	window	is	as	small	as	half-standard	(that	is,	when	the	rose	is	75	by	50	pixels).	At	standard	scale	(150	by	100),	it
will	therefore	appear	stretched	and	coarse.	If	the	window	is	smaller	than	half	the	standard	size,	the	rose	should	not
shrink	beyond	75x50,	so	that	pixels	are	never	lost.

·		Image	size	(75,50);	stdratio	2.0;	minratio	1.0;	maxratio	2.0.

End	of	verbose	examples.

11.3.	The	Adaptive	Palette	Chunk

This	chunk	contains	a	list	of	pictures	that	change	their	colors	according	to	the	pictures	plotted	before.	The	chunk	type	is
'APal'.	It	is	optional.	This	chunk	is	meaningful	only	in	Z-code	resource	files.

This	format	exists	to	describe	the	legacy	behavior	of	some	V6	Infocom	games	(Zork	Zero	and	Arthur).	Its	support	in
interpreters	is	optional,	and	its	use	is	strongly	discouraged	for	any	purpose	other	than	conversions	of	Infocom	graphics.

4	bytes									'APal'										chunk	ID
4	bytes									num*4											chunk	length
num*4	bytes					...													adaptive	palette	entries

Each	entry	is	4	bytes,	of	the	form:

4	bytes									number										picture	resource	number

If	this	chunk	is	present:

·		All	pictures	in	the	Blorb	file	will	be	PNGs	or	Rects.
·		All	PNGs	will	be	indexed-color	(color	type	3).

·		All	PNGs	will	use	only	color	indices	2	through	15.
·		All	PNGs	will	have	no	more	than	16	entries	in	their	PLTE	chunk.
·		PNGs	may	have	a	tRNS	chunk	marking	color	0	only	as	fully	transparent,	in	which	case	color	index	0	may	also	be
used.	No	other	forms	of	the	tRNS	chunk	are	valid.

However,	the	following	rules	still	apply	from	the	PNG	standard:

·		Any	bit	depth	of	PNG	is	valid	(1,	2,	4,	or	8	bits	per	pixel).
·		The	PLTE	chunk	is	required	by	the	PNG	standard,	and	it	must	have	sufficient	entries	to	cover	every	color	used	in	the
PNG,	even	in	adaptive-palette	pictures.

·		The	PLTE	chunk	may	not	have	more	entries	than	can	be	represented	by	the	PNG's	bit	depth.
·		The	PNGs	may	have	gAMA,	cHRM	and	sRGB	or	iCCP	chunks	describing	the	color	space.	Interpreters	should	make
every	effort	to	support	at	least	gAMA.	For	the	Infocom	graphics	at	least,	cHRM,	sRGB	and	iCCP	are	probably	beyond
the	call	of	duty.

These	restrictions,	though	intricate,	serve	to	make	the	interpreter's	life	easier	at	the	expense	of	constraining	the	creator.
The	constraints	are	natural	given	the	form	of	the	original	Infocom	graphics.

The	interpreter	should	keep	track	of	the	"Current	Palette".	This	will	be	a	14-entry	table,	covering	color	indices	2-16.	For
ease	of	implementation,	this	will	probably	be	a	16-entry	table,	whose	first	two	entries	are	not	significant.

Whenever	a	picture	not	listed	in	the	APal	chunk	is	plotted,	its	palette	(as	derived	from	its	PLTE,	gAMA,	cHRM	and
sRGB/iCCP	chunks)	should	be	copied	into	the	Current	Palette.	If	its	palette	has	fewer	than	16	entries,	then	only	those
entries	of	the	Current	Palette	are	changed.	(Possible	interpreter	implementation:	transform	the	PNG's	PLTE	chunk
according	to	the	gAMA,	cHRM,	sRGB	chunks,	then	copy	it	into	your	Current	Palette	which	is	always	in	the	screen	color-
space.	With	libpng,	use	png_get_PLTE,	after	calling	png_update_info).

Whenever	a	picture	listed	in	the	APal	chunk	is	plotted,	its	palette	should	be	ignored,	and	it	should	be	plotted	with	the
Current	Palette.	(Possible	interpreter	implementation:	strip	out	the	PLTE,	gAMA,	cHRM	and	sRGB/iCCP	chunks	from
the	PNG,	and	insert	the	Current	Palette	as	its	PLTE.	Or	with	libpng,	use	png_set_PLTE	before	reading	the	data).

The	behavior	is	undefined	if	any	adaptive-palette	pictures	are	plotted	before	a	non-adaptive	picture	has	been	plotted.

If	picture	caching	(through	@picture_data	or	otherwise)	is	implemented,	special	attention	may	need	to	be	paid	to	ensure
that	adaptive	images	that	are	cached	are	still	appropriate	for	the	Current	Palette	when	plotted.	It	would	appear	that	the
Zork	Zero	does	reset	the	cache	after	a	palette	change,	but	this	has	not	been	exhaustively	investigated.

Alternatively,	for	the	full	retro-gaming	experience,	the	pictures	can	be	handled	in	the	same	way	as	the	Amiga	and	IBM
MCGA	interpreters,	as	follows:	Use	a	16-color	screen	mode.	Copy	non-adaptive	pictures'	palette	(apart	from	the	first	two
entries)	into	the	screen	palette	when	plotted.	Use	color	indices	0	and	1	for	the	window	background	and	text	respectively.
This	mimics	the	IBM	MGA	and	Amiga	display,	where	drawing	a	picture	can	change	the	colors	of	graphics	already	on	the
screen,	but	it	is	not	the	preferred	rendering.

Shogun	and	Journey	do	not	use	any	adaptive-palette	images,	but	on	some	platforms	the	effect	of	pictures	already	on	the
screen	changing	color	is	visible.	To	give	an	interpreter	the	ability	to	do	this	if	desired,	and	to	signal	that	optimizations
may	be	possible	because	of	the	limited	nature	of	the	graphics,	the	Blorb	files	for	Shogun	and	Journey	contain	an	empty
APal	chunk.

[Thanks	to	Kevin	Bracey	for	this	extension.]

11.4.	The	Looping	Chunk

This	chunk	contains	information	about	which	sounds	are	looped,	in	a	V3	Z-machine	game.	The	chunk	type	is	'Loop'.	It	is
optional.

Note	that	in	V5	and	later,	the	@sound_effect	opcode	determines	whether	a	sound	loops.	The	looping	chunk	is	ignored.
Therefore,	this	chunk	should	not	be	used	at	all	in	Blorb	files	intended	for	games	which	are	not	V3	Z-machine	games.

The	format	is:

4	bytes									'Loop'										chunk	ID
4	bytes									num*8											chunk	length
num*8	bytes					...													sound	looping	entries

Each	entry	is	8	bytes,	of	the	form:

4	bytes									number										sound	resource	number
4	bytes									value											repeats

The	repeats	flag	is	one	if	the	sound	is	to	be	played	once;	it	is	zero	if	the	sound	is	to	repeat	indefinitely	(until	it	is	stopped
or	another	sound	started.)	If	there	is	no	entry	for	a	particular	sound	resource,	or	if	the	looping	chunk	is	absent,	the	V3
interpreter	should	assume	the	flag	is	one,	and	play	the	sound	exactly	once.

12.	Other	Optional	Chunks

A	resource	file	can	contain	extra	user-level	information	in	'AUTH',	'(c)	',	and	'ANNO'	chunks.	These	are	all	optional.	An
interpreter	should	not	do	anything	with	these	other	than	ignore	them	or	(optionally)	display	them.

These	chunks	all	contain	simple	ASCII	text	(all	characters	in	the	range	0x20	to	0x7E).	The	only	indication	of	the	length	of
this	text	is	the	chunk	length	(there	is	no	zero	byte	termination	as	in	C,	for	example).

The	'AUTH'	chunk,	if	present,	contains	the	name	of	the	author	or	creator	of	the	file.	This	could	be	a	login	name	on	multi-
user	systems,	for	example.	There	should	only	be	one	such	chunk	per	file.

The	'(c)	'	chunk	contains	the	copyright	message	(date	and	holder,	without	the	actual	copyright	symbol).	There	should
only	be	one	such	chunk	per	file.

The	'ANNO'	chunk	contains	any	textual	annotation	that	the	user	or	writing	program	sees	fit	to	include.

13.	Deprecated	Chunks

Some	older	Z-code	Blorb	files	contain	an	'SNam'	(story	name)	chunk,	which	contains	the	game's	title.	The	format	of	this
chunk	is	Unicode	UTF-16,	with	the	16-bit	values	stored	big-endian.	Modern	Blorb	files	should	not	have	an	'SNam'	chunk;
this	information	should	be	stored	in	the	metadata	chunk	instead.

14.	Presentation	and	Compatibility

14.1.	File	Suffixes

Previous	versions	of	the	Blorb	spec	did	not	discuss	file	naming.	However,	with	the	relapse	of	MacOS	into	filename	suffix
semantics,	it	is	impossible	for	us	to	pretend	that	the	issue	is	an	implementation	detail.

It	is	always	legal	for	a	Blorb	file	to	have	a	".blorb"	filename	suffix.	However,	interpreters	have	a	natural	interest	in
locating	their	sort	of	Blorb	files	–	Z-code,	Glulx,	or	so	on	–	and	it	is	generally	easier	for	them	to	do	this	by	filename	suffix,
rather	than	by	opening	each	Blorb	and	looking	at	its	resource	index.	Therefore,	".zblorb"	and	".gblorb"	should	be	used	to
designate	Blorb	files	containing	Z-code	and	Glulx	games,	respectively.

On	platforms	which	limit	filename	suffixes	to	three	characters,	the	suffixes	".blb",	".zlb",	and	".glb"	may	be	used	instead.
But	this	practice,	at	least,	I	can	deprecate	without	qualm.	I	hope.

14.2.	MIME	Types

Historically,	Blorb	files	have	been	associated	with	the	MIME	type	application/x-blorb.

We	can	use	the	profile	feature	of	MIME	to	differentiate	the	contents:	application/x-blorb;profile="zcode"	and
application/x-blorb;profile="glulx"	for	the	common	virtual	machines.

(Previous	versions	of	this	spec	suggested	application/x-blorb-zmachine	and	application/x-blorb-glulx.	These	are
now	deprecated.)

14.3.	Z-Machine	Compatibility	Issues

The	image	system	presented	in	this	document	is	fully	backwards-compatible	with	Infocom's	interpreters.	Infocom	V6
games,	such	as	Arthur,	Journey,	and	Zork	Zero,	contain	only	non-scalable	image	resources.	The	game	files	are	written	to
deal	with	both	variations	in	window	size	and	variations	in	image	size	(since	the	interpreters	for	different	platforms	had

different	window	sizes	and	different	art.)	Therefore,	if	you	construct	a	Blorb	file	containing	the	images	from	a	particular
platform	(say,	the	Mac)	and	give	it	the	suggested	window	size	of	the	Infocom	Mac	interpreter,	the	game	file	will	deal
with	it	correctly.

The	image	system	is	also	sort	of	forwards-compatible,	in	the	following	sense.	If	you	take	a	Blorb	file	whose	standard
(intended)	window	size	is	the	same	as	the	Infocom	interpreter's,	and	break	it	out	into	Infocom	image	files,	the	Infocom
interpreter	should	display	it	correctly.	The	interpreter	will	not	scale	images,	but	since	the	window	size	is	equal	to	the
standard	size,	the	Blorb	rules	require	the	images	to	be	displayed	unscaled	anyway.

Also,	of	course,	if	you	take	a	Blorb	file	which	contains	only	non-scalable	images,	an	Infocom	interpreter	will	act
correctly,	since	it	will	not	scale	the	images	regardless	of	the	standard	size.

The	sound	system	is	slightly	more	problematic.	A	game	file	can	announce	that	it	uses	sound,	by	setting	a	header	bit;	the
interpreter	can	announce	that	it	does	not	support	sound,	by	clearing	that	bit.	But	there	is	no	way	to	distinguish	a	game
that	uses	sampled	sound	only,	from	one	that	uses	sampled	sound	and	music.	(And	similarly	for	the	interpreter's	support
of	samples	versus	music.)	This	may	be	addressed	in	a	future	revision	of	the	Z-machine.	In	the	meantime,	games	should
set	that	header	bit	if	any	kind	of	sound	is	used	(samples	or	music	or	both.)	And	interpreters	should	clear	that	bit	only	if
no	sound	support	is	available.	If	the	interpreter	supports	sampled	sound	but	not	music,	it	should	leave	the	header	bit
set,	announcing	that	it	does	"support	sound."	It	should	then	ignore	any	request	to	play	a	music	resource.

There	is	also	the	question	of	overlapping	sounds.	The	Z-Spec	(9.4.2)	says	that	starting	a	new	sound	effect	automatically
stops	any	current	one.	But	it	is	not	desirable	that	a	sound	effect	such	as	footsteps	should	interrupt	the	playing	of
background	music.	Therefore,	the	interpreter	should	amend	this	rule,	and	consider	sampled	sounds	and	music	to	be	in
seperate	"channels".	Samples	interrupt	samples,	and	music	interrupts	music,	but	one	form	of	sound	does	not	interrupt
the	other.

This	is	an	actual	variance	in	the	behavior	of	the	Z-machine,	and	worse,	a	variance	which	depends	on	data	format.	(One
sound	will	either	stop	another,	or	not,	depending	on	whether	the	sound	is	stored	in	AIFF	(sampled)	or	Ogg/MOD	(music)
format.)	We	apologize	for	the	ugliness.

Again,	future	versions	of	the	Z-machine	may	address	this	issue,	and	allow	a	more	general	system	where	any	sound	can
be	overlaid	on	any	other	sound,	or	interrupt	it,	as	the	game	desires	and	regardless	of	storage	format.	(After	all,	there	can
be	background	sounds	as	well	as	background	music.)	Such	a	system	would	also	allow	the	interpreter	to	announce	its
limitations	and	capabilities	–	whether	it	can	play	music,	whether	it	can	play	two	pieces	of	music	at	once,	how	many
sampled	sounds	it	can	play	at	once,	etc.

A	final,	ah,	note:	The	remark	at	the	end	of	Z-Spec	chapter	9,	about	sequencing	sound	effects	to	simulate	the	slow	Amiga
version	of	"The	Lurking	Horror",	should	not	be	applied	to	music	sounds.	New	music	should	interrupt	old	music
immediately,	regardless	of	whether	keyboard	input	has	occurred	since	the	old	music	started.

14.4.	Glk	Compatibility	Issues

The	Glk	I/O	library	was	designed	with	portable	resources	in	mind,	so	there	should	be	no	incompatibility.

Remember	that	the	resolution	and	scaling	data	is	not	used	by	Glk.	That	chunk	is	ignored	by	Blorb-capable	Glk	libraries.

14.5.	ADRIFT	5	Compatibility	Issues

ADRIFT	supports	more	media	formats	than	Blorb,	but	has	adopted	Blorb	as	a	packaging	format.	To	permit	this,	the
following	chunk	types	may	be	used	in	ADRIFT	blorbs:

For	images:	'GIF	'.

For	sounds:	'WAV	',	'MIDI',	'MP3	'.

ADRIFT	Blorb	files	should	use	MIME	type	application/x-blorb;profile="adrift".	The	filename	suffix	should	be
".blorb"	or	".adriftblorb".	["A"	or	"AD"	is	unfortunately	not	a	unique	prefix	when	it	comes	to	IF	systems!]

15.	The	IFF	Format

A	description	of	the	IFF	format	can	be	found	at

·		http://eblong.com/zarf/blorb/iff.html

http://eblong.com/zarf/blorb/iff.html

In	the	interests	of	simplicity,	this	proposal	does	not	use	IFF	LISTs	or	CATs,	even	though	its	purpose	is	to	contain
concatenated	lists	of	data.	Therefore,	the	format	can	be	quickly	described	as	follows:

4	bytes									'FORM'										Magic	number	indicating	IFF
4	bytes									n															FORM	length	(file	length	-	8)
4	bytes									'IFRS'										FORM	type
n-4	bytes							...													The	chunks,	concatenated

Each	chunk	has	the	following	format:

4	bytes									id														Chunk	type
4	bytes									m															Chunk	data	length
m	bytes									...													Chunk	data

Remember	that	the	chunk	length	never	includes	the	eight-byte	header	(the	type	and	length).	This	is	true	for	the	top-
level	FORM	and	internal	FORMs	as	well.

If	a	chunk	has	an	odd	length,	it	 must	be	followed	by	a	single	padding	byte	whose	value	is	zero.	(This	padding	byte	is	not
included	in	the	chunk	length	m.)	This	allows	all	chunks	to	be	aligned	on	even	byte	boundaries.

All	numbers	are	two-byte	or	four-byte	unsigned	integers,	stored	big-endian	(most	significant	byte	first.)	Character
constants	such	as	'FORM'	are	stored	as	four	ASCII	bytes,	in	order	from	left	to	right.

When	reading	an	IFF	file,	a	program	should	always	ignore	any	chunk	it	doesn't	understand.

16.	Other	Resource	Arrangements

It	may	be	convenient	for	an	interpreter	to	be	able	to	access	resources	in	formats	other	than	a	resource	file.	In	particular,
when	developing	a	game,	an	author	will	want	to	load	images	and	sounds	from	individual	files,	rather	than	having	to	re-
package	all	the	resources	whenever	any	one	of	them	changes.

Such	resource	arrangements	are	platform-specific,	and	the	details	are	left	to	the	interpreter.	However,	one	suggestion	is
to	have	a	single	directory	which	contains	all	the	resources	as	files,	with	one	file	per	resource.	(PNG	files	for	images,	and
so	on.	The	contents	of	each	file	would	be	exactly	the	same	as	the	contents	of	the	equivalent	chunk,	minus	the	initial
eight	bytes	of	type/length	information.)	Files	would	be	named	something	like	"PIC1",	"PIC2"...,	"SND1",	"SND2"...,
"DATA1",	"DATA2"...,	and	so	on.	An	executable	game	file	(if	present)	would	be	named	"STORY".	Other	chunks	would	be
named	as	follows:

·		"IDENT":	game	identifier	chunk
·		"PALETTE":	color	palette
·		"FRONTIS":	frontispiece	identifier
·		"RESDESC":	resource	textual	descriptions
·		"METADATA":	metadata	document
·		"RELEASE":	release	number
·		"RESOL":	resolution	chunk
·		"ADAPTPAL":	adaptive	palette	list
·		"LOOPING":	looping	chunk

(Naturally,	file	suffixes	would	be	added	in	platforms	that	require	them.)	The	interpreter	would	be	started	up	and	handed
the	entire	directory	as	an	argument;	or	possibly	the	directory	along	with	a	separate	Z-code	file.

It	is	of	course	possible	to	break	a	Blorb	file	down	into	a	directory	in	this	format.	When	doing	this,	one	must	remember
that	AIFF	(and	no	other	chunk	type)	uses	an	IFF	form	as	its	single-file	representation.	Therefore,	the	SND...	file
representing	an	AIFF	will	begin	"FORM(length)AIFF",	followed	by	the	chunk	data.	All	other	chunk	types	would	be
turned	into	files	simply	by	extracting	the	chunk	data.

17.	Rationales	and	Rationalizations

·		Why	have	a	common	resource	collection	format?

Infocom	chose	not	to	standardize	their	resource	formats;	they	had	a	different	picture	format	for	each	platform.	This	was
a	reasonable	choice	for	them,	since	they	were	writing	all	the	games,	all	the	art,	and	all	the	interpreters.	They	therefore

had	the	capacity	to	translate	the	art	into	platform-specific	formats	for	all	the	platforms	they	supported.

In	the	modern	age,	an	IF	author	does	not	have	access	to	all	the	platforms	his	game	will	be	played	on.	It	is	therefore
reasonable	to	distribute	art	in	a	single	format,	and	leave	interpreter	writers	the	job	of	supporting	that	format.

·		Why	an	IFF-based	format?

IFF	does	what	we	want;	it's	a	known,	very	simple	way	to	concatenate	chunks	of	data	together.

Also,	the	common	save-file	format	is	IFF-based.	This	allows	interpreters	to	use	the	same	code	for	reading	both	save	files
and	resource	files.

·		Why	not	compress	data	as	well	as	archiving	it?	Why	just	concatenate	everything	together	as	chunks?

Any	reasonable	sound	or	image	format	already	incorporates	compression.

·		Why	is	there	a	"number"	field	in	the	entries	in	the	resource	index	chunk?	Why	not	just	assume	chunks	are
numbered	consecutively?

On	the	Z-machine,	pictures	are	not	necessarily	numbered	contiguously	(Z-Spec	8.8.6.1.)	Sounds	are	numbered
consecutively,	but	sounds	1	and	2	are	bleeps,	so	the	game-specific	sound	resources	start	at	3.	(Z-Spec	9.2.)	In	Glk,
resources	need	not	be	contiguous	at	all.	Rather	than	jigger	the	numbering	or	require	place-holder	chunks,	I	decided
there	should	be	an	index	which	maps	resource	numbers	to	chunks.

·		Why	only	two	image	formats?	Why	not	allow	any	image	format?

The	whole	point	of	this	exercise	is	to	assure	the	author	that	the	player	can	view	his	art.	If	we	allow	lots	of	different
formats,	we	can't	possibly	insist	that	every	interpreter	must	display	all	the	formats.	This	leaves	us	just	about	back	where
we	started.	Individual	game	authors	would	be	negotiating	with	individual	interpreter	authors	to	support	particular
formats,	and	it	would	just	be	icky.

Therefore,	we	do	insist	that	every	interpreter	be	able	to	display	all	the	formats	listed	in	this	standard.	That	means	a
small	number	of	formats.	See	the	next	two	questions.

It	is	very	strongly	suggested	that	an	interpreter	use	standard	open-source	libraries	for	interpreting	sound	and	image
resources.	To	rely	on	OS	services,	while	tempting,	is	a	road	paved	with	incompatibility	problems.

·		Okay,	then,	why	three	sound	formats?

Because	a	sampled-sound	format	(like	AIFF)	can	reproduce	anything,	and	a	compressed	digital	format	(like	Ogg)	can
reproduce	large	sounds	efficiently.

MOD	can	reproduce	music	even	more	efficiently,	but	it's	really	retained	in	the	spec	more	for	backwards	compatibility
than	for	any	technical	reason.	Existing	games	use	it,	and	while	it's	not	very	well	standardized,	it	seems	to	work.

(The	"song"	format	was	never	widely	used,	which	is	both	the	qualification	and	the	justification	for	deprecating	it.)

·		Why	PNG	and	JPEG	for	images?

The	PNG	format	is	not	burdened	with	patent	restrictions;	it	is	free;	it's	not	lossy;	and	it	can	efficiently	store	many	types	of
images,	from	1-bit	(monochrome)	images	up	to	48-bit	color	images.	JPEG	is	lossy	and	not	optimal	for	images	other	than
photographs,	but	compresses	photographs	well.	Earlier	versions	of	Blorb	specified	only	PNG,	but	JPEG	was	a	popular
request,	and	the	two	formats	should	complement	each	other.

As	to	other	possibilities:	GIF	is	a	popular	format,	but	was	previously	owned	by	twits	who	restricted	its	use.	(Life	has
improved,	but	we	have	PNG	now	and	we	will	stick	with	it.)	TIFF	has	been	suggested,	but	it	seems	to	be	overly	baroque.
Blorb	is	likely	to	stay	with	PNG	and	JPEG	for	the	foreseeable	future.

·		So	why	does	ADRIFT	get	a	bye	on	these	format	decisions?

Game	authors	and	interpreters	need	to	agree	on	what	formats	they	will	use.	Z-code	had	no	cross-platform	agreement
when	Blorb	was	invented,	and	Glulx	was	created	to	use	Blorb,	so	Blorb's	role	for	them	is	normative.	GIF	and	MP3	are	not
going	to	become	standard	Blorb	format	types.

ADRIFT,	in	contrast,	already	had	cross-platform	interpreters	when	it	adopted	Blorb.	Blorb	can	therefore	be	valuable	to

ADRIFT	as	a	packaging	and	metadata	format,	while	taking	a	descriptive	role	on	media	formats.	(The	alternative	would
be	to	disallow	ADRIFT	Blorb	files,	which	seems	silly.)

[It	is	worth	noting,	however,	that	IF	interpreters	are	often	ported	by	adapting	existing	IF	display	code.	IF	interpreter
ports	can	also	be	based	on	Glk	libraries	and	the	Glk	API.	Both	routes	entail	the	Blorb	standard	media	format	list,	to	some
extent.	Therefore,	game	authors	have	some	reason	to	consider	sticking	to	those	formats.]

·		What	is	the	Blorb	Policy	on	Color	Depth?

The	idea	is	that	each	author	can	decide	what	kind	of	color	requirements	his	game	will	have.

The	alternative	(which	we	did	not	choose)	would	be	to	mandate	a	fixed	set	of	color	requirements	for	all	graphical	games
–	for	example,	an	8-bit	color	display	set	to	a	color-cube	set	of	colors.	This	seems	like	a	dumb	idea.	Any	fixed	set	of
requirements	is	going	to	be	impossible	for	some	machines	and	standard	equipment	on	others,	and	both	these	sets	will
change	over	time.	The	requirements	would	quickly	become	obsolete.

Instead,	we	choose	to	allow	any	kind	of	art	in	graphical	games.	If	the	author	includes	only	monochrome	images,	the
game	will	run	anywhere.	If	the	author	includes	full-color	32-bit	images,	he	is	creating	a	game	which	wants	a	powerful
graphics	machine	to	display	itself	on.	That's	the	author's	choice.	If	the	player's	machine	only	allows	8-bit	color,	his
interpreter	will	have	to	dither	or	otherwise	reduce	the	color	information	of	the	game	art.	The	player	can	accept	this,	buy
a	more	powerful	computer,	or	throw	away	the	game.	There's	no	way	around	that.	The	problem	can	only	be	avoided	by
outlawing	32-bit	color	images,	which	we	do	not	wish	to	do.

·		What's	the	idea	of	the	palette	chunk?

The	palette	chunk	itself	is	provided	for	the	benefit	of	interpreters	which	can	control	their	display	palettes	or	color
depth.	The	palette	declares	the	minimum	set	of	colors	(or	direct-color	depth)	which	the	author	wants	you	to	have	in
order	for	the	game	to	"look	okay."	It	may	be	a	good	idea	to	switch	palettes	in	order	to	play	a	particular	game;	the	palette
chunk	tells	the	interpreter	this	advice.

Now,	the	interpreter	is	not	 required	to	follow	this	advice.	This	is	for	the	player's	benefit;	if	the	player	has	a	monochrome
machine,	or	just	doesn't	like	changing	palettes,	he	is	not	denied	the	opportunity	to	play	the	game.	He'll	just	get	reduced-
quality	art.	That's	his	choice.	As	stated	above,	he	can	accept	it,	upgrade,	or	throw	the	game	away.

·		What	is	the	Blorb	Policy	on	Pixel	Size?

We	make	a	couple	of	assumptions.

Assumption	one:	Image	pixels	are	square.	Your	images	should	have	the	correct	aspect	ratio	when	drawn	with	square
pixels	–	that	is,	when	the	number	of	image-pixels-per-inch	is	the	same	vertically	and	horizontally.	If	your	art	program
doesn't	understand	square	pixels,	get	a	real	art	program.	There.	That's	resolved.

(This	means	that	if	an	image	is	400	pixels	wide	and	200	pixels	high,	the	interpreter	should	draw	it	on	the	screen	with	a
physical	width	twice	its	physical	height.	Anything	else	will	look	distorted.)

(It	has	been	noted	that	this	does	not	exactly	apply	to	Infocom's	V6	games;	their	art	was	probably	designed	for	an	era	of
computers	that	did	not	have	exactly	square	pixels	(IBM	EGA,	Apple	II	machines	displaying	on	television	screens,	and
other	such	barbarisms.)	However,	this	does	not	seem	to	have	concerned	them.	Infocom	interpreters	which	are	running
on	modern	machines,	with	square-pixel	displays,	display	their	art	with	square	pixels.	We	will	do	the	same.)

Assumption	two:	It	is	always	okay	to	draw	images	at	their	"actual	size"	–	one	image	pixel	per	screen	pixel.

Now	you	think	I'm	crazy.	It	is	true	that	many	modern	screens	can	be	adjusted	to	different	pixel	sizes.	However,	 I	declare
this	to	be	an	illusion.	If	a	user	sets	his	monitor	to	smaller	pixels,	it's	because	he	wants	a	given	image	to	be	smaller.	So	he
can	fit	more	of	them	on	screen.	He	also	wants	his	text	to	be	smaller,	and	his	windows.	That's	the	way	web	browsers
work,	that's	the	way	Adobe	Photoshop	works,	and	that's	damn	well	good	enough	for	the	Z-machine.

Perhaps	in	the	future	there	will	be	monitors	that	break	this	rule	–	much	smaller	pixels,	300	or	600	pixels	per	inch,	for
example.	At	that	time	there	will	be	some	consensus	on	how	to	display	images.	(Frankly,	I	expect	it	will	be	"draw	them	at
55,	72,	or	88	pixels	per	inch,	depending	on	the	user's	previous	preference."	Or	some	such	set	of	standard	options.)	Z-
machine	interpreters	can	follow	that	plan	when	it	emerges.

Until	then,	the	right	size	for	a	non-scaled	picture	is	one	image	pixel	per	screen	pixel.	If	an	image	is	to	be	scaled	by	a	ratio
of	2.0,	then	the	right	size	for	it	is	one	image	pixel	per	two	screen	pixels	(vertically	and	horizontally).	And	so	on.

·		Where	do	Z-pixels	come	into	all	this?

The	definition	of	Z-pixels	is	entirely	up	to	the	interpreter.	This	standard	says	nothing	on	the	subject,	and	does	not	care.

It	is	true	that	the	interpreter	must	tell	the	game	what	the	window	size	and	image	sizes	are,	as	measured	in	Z-pixels.
That's	the	interpreter's	job.	The	interpreter	knows	how	big	its	window	is,	in	screen	pixels;	it	translates	that	into	Z-pixels
–	using	whatever	definition	it	has	–	and	reports	it	to	the	game.	Then,	the	scaling	rules	of	this	spec	define	what	the
display	sizes	of	the	images	will	be,	as	measured	in	screen	pixels.	The	interpreter	translates	these	sizes	into	Z-pixels	–
using	the	same	definition	–	and	reports	them	to	the	game.	All	consistent	and	well-defined.

·		What	is	the	Blorb	Policy	on	Interpreters	that	do	Funky	Stuff?

The	interpreter	is	Allowed.	It's	okay	to	be	ugly.

For	example,	someone	may	(in	a	fit	of	insanity)	write	a	Blorb-compliant	interpreter	for	the	Apple	II.	The	Apple	II	had
non-square	pixels.	But	(assume)	it	doesn't	have	the	processing	power	to	scale	all	its	images	by	a	factor	of	1.2	(or
whatever)	to	adjust	for	this.	Well,	it's	legal	to	write	an	interpreter	that	draws	art	at	one	image	pixel	per	(non-square)
screen	pixel.	The	art	will	look	distorted;	the	user	can	like	it	or	play	on	a	different	machine.

For	another	example,	someone	may	want	their	entire	game	display	doubled	in	size.	All	the	art	twice	as	large	(in	screen
pixels)	as	this	spec	says	it	should	be.	An	interpreter	which	has	this	option	is	legal.	It's	the	moral	equivalent	of	mounting	a
magnifying	glass	on	your	monitor	–	that	certainly	doesn't	violate	any	software	standards.

·		What	about	playing	Blorb-packaged	games	on	original	Infocom	interpreters?

It's	possible.	You'll	have	to	unpack	the	PNG	art	and	translate	it	into	the	format	that	Infocom	used.	Since	the	Infocom
interpreters	had	a	hard-wired	screen	size,	you	can	precompute	all	the	scaling	factors,	and	do	any	necessary	scaling	in
the	translation	process.	32-bit	color	images	will	have	to	be	color-reduced;	that's	the	way	it	goes.	But	the	result	should	be
fully	playable	on	Infocom's	interpreters.

·		Have	you	considered	–

Yes.

	Blorb: An IF Resource Collection Format Standard
	0. Overall Structure
	1. Contents of the Resource Index Chunk
	2. Picture Resource Chunks
	2.1. PNG Pictures
	2.2. JPEG Pictures
	2.3. Placeholder Pictures

	3. Sound Resource Chunks
	3.1. AIFF Sounds
	3.2. Ogg Sounds
	3.3. MOD Sounds
	3.4. Song Sounds

	4. Data Resource Chunks
	5. Executable Resource Chunks
	5.1. Multiple Executable Chunks

	6. The Game Identifier Chunk
	7. The Color Palette Chunk
	8. The Frontispiece Chunk
	9. The Resource Description Chunk
	10. Metadata
	11. Chunks Specific to the Z-machine
	11.1. The Release Number Chunk
	11.2. The Resolution Chunk
	11.3. The Adaptive Palette Chunk
	11.4. The Looping Chunk

	12. Other Optional Chunks
	13. Deprecated Chunks
	14. Presentation and Compatibility
	14.1. File Suffixes
	14.2. MIME Types
	14.3. Z-Machine Compatibility Issues
	14.4. Glk Compatibility Issues
	14.5. ADRIFT 5 Compatibility Issues

	15. The IFF Format
	16. Other Resource Arrangements
	17. Rationales and Rationalizations

